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Agenda
• Discussing	the	choices	of	different	languages	to	
implement	the	mechanisms	of	object-oriented	
programming.	

• Languages	discussed	are	C++,	Java,	C#	in	historical	
order.	

• I	tried	to	come	up	with	the	languages	that	reflect	
the	development	of	our	understanding	of	OOP	
since	80’s.
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Several Points - I

• I	want	to	proceed	in	this	talk	rather	in	a	more	
interacJve	manner	so	please	feel	free	to	join	the	
talk.	

• Different	languages	have	different	cultures	or	
convenJons	including	naming	and	represenJng	
things.	

• Main	convenJon	in	this	work	is	that	of	Java	although	I	try	
to	observe	others	as	much	as	I	know.
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Several Points

• Due	to	changes	and	improvements	in	different	
versions	of	languages	I	menJoned	here	I	may	make	
mistakes	about	their	features	so	please	don’t	
hesitate	to	correct	or	suggest	an	alternaJve	
regarding	the	issue.

4



www.selsoft.academy

Theory
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Software and Objects

• An	Aristotalian	deducJon:	

• SoPware	systems	are	simulaJons	of	the	World,	

• World	can	be	seen	as	totality	of	objects	(or	facts?),	

• So	soPware	systems	can	be	seen	as	simulaJons	of		
objects	of	the	World.	

• Construc*ng	so-ware	systems	using	objects	is	the	most	
natural	way	to	develop	so-ware.

6
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What is Object? - I
• English	word	object	stems	from	LaJn	word	obiectus	
(or	objectus),	passive	parJciple	of	obicio.	

• Obicio	in	LaJn	means	“throw	or	put	in	front	of	or	before”	

• ob	means	towards,	against,	jacere	means	to	throw,	to	put	

• object	vs.	inject!	

• Object	is	anything	against	the	subject,	which	is	the	
mind,	

• Object	is	anything	the	mind	percieves	or	think.
7



www.selsoft.academy

What is Object? - II
• In	archaic	Greek	object	is	αντικείμενο	
(an8keimena),	meaning	karşıdaki	şey		

• In	Osmanlıca,	it	is	müteallak/mütekabil	

• Taalluk:	İlgisi	olma,	ilgi,	bağlan^	

• Tekabül:	Karşılık	olma	

• In	modern	Turkish,	it	is	nesne,	ne	ise	(nesene,	nim	
érse)
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What is Object? - III

• Philosophically,	object	is	bundle	of	qualiJes/
properJes.	

• So	what	are	those	qualiJes?

9
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Categories

• According	to	Aristotle,	there	are	10	types	of	things.	

• Substance	can	exist	as	its	own	and	all	others	can	only	exist	
as	long	as	they	are	aeributed	to	or	said	of	a	substance.

10
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Properties of Objects

• So	a	substance	may	have	some	properJes	
expressed	in	terms	of	countable,	uncountable,	
temporal	and	posiJonal	qualiJes,	

• It	holds	some	relaJonships	with	other	substances,	

• It	has	some	acJons	or	behaviors	and	

• It	receives	some	events.
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Substance of Object

• It	is	substance	that	holds	all	properJes	and	
behaviors	that	can	be	said	of	the	objects	of	that	
substance.	

• Substance	is	the	form	or	archetype	of	object.	

• Substance	is	the	common	structure	of	the	objects	
of	the	same	form.
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Relationships Among Substances

• Different	substances	can	have	relaJonships	among	
themselves.	

• Substances	may	be	aeributed	to	other	substances.	

• Substances	may	have	hierarchies.

14
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Association Among Substances

• Substances	may	be	aeributed	to	or	associated	with	
other	substances.	

• A	substance	may	be	a	quality	of	another.	

• When	a	substance	is	aeributed	to	another	
substance,	relaJonship	among	them	seem	to	be	
more	contact	point-oriented	i.e.	interacJons	
happen	on	specific	contact	points	on	substances	
leaving	unrelated	aspects	untouched.	
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Substance Hierarchies

• Substances	may	have	hierarchies.	

• Substances	lower	in	the	hierarchy	share	the	same	
qualiJes	of	the	substances	in	the	upper.	

• This	is	called	inheritance

16
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Natural Objects

Plant Animal Mineral

Mammal Fish Bird Reptile Amphibian Insect

Dog Cow Monkey . . .
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Transition from Theory
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Programming Languages

• Programming	languages	are	for	developing	
soPware	systems.	

• Programming	languages	that	have	mechanisms	to	
apply	the	ontology	menJoned	before	are	called	
object-oriented.
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Object of Software - I
• In	terms	of	object	of	the	soFware,		

• qualiJes	are	expressed	in	terms	of	different	types	of	data,	

• acJons	and	events	are	expressed	in	terms	of	funcJons	or	
methods.	

• Each	quality	of	the	object	is	called	data	member,	
field	or	property.	

• Totality	of	the	methods	that	can	be	called	on	an	
object	is	called	interface.
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Encapsulation & Information Hiding

• Packaging	a	substance	with	its	properJes	and	
methods	is	called	encapsula*on.	

• An	encapsulated	substance	turns	to	a	type	in	OOPLs.		

• EncapsulaJons	mostly	have	a	complementary	
mechanism	called	informa*on	hiding	to	abstract	
away	from	others	its	complexiJes	regarding	its	
inner	workings.
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Programming Abstractions - I

• OOPLs	mainly	abstract	two	things	in	a	type:	

• Data	abstracJon:	It	abstracts	away	the	inner	complexiJes	
of	abstract	data	types.	

• Process	abstracJon:	It	abstracts	away	how	data	is	
processed.
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Programming Abstractions - II

• OOPLs	should	also	have	mechanisms	to	express	
relaJonships	among	types	i.e.	associaJons	and	
inheritance.	

• Moreover	OOPLs	should	provide	access	control	
mechanisms	to	enforce	informaJon	hiding.
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Good Software

• Good	soPware	systems	are	those	that	

• do	what	is	expected	by	their	users	correctly,	

• do	it	using	a	reasonable	amount	of	resources,	

• are	easy	to	understand	and	maintain	which	is	mainly	
modifiying	by	adding	new	funcJonaliJes.	

• Which	one	do	you	thing	is	the	most	difficult?	Can	
you	order	them?
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Coupling and Cohesion

• To	create	easy-to-understand-and-maintain	
soPware	systems	we	need	to	make	types	highly-
cohesive	and	lowly-coupled.	

• So	as	the	types	of	the	soPware	should	correctly	
depict	the	substances	of	the	real	world
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Implementation
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Encapsulation
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Encapsulation in OOPLs

• C++,	Java	and	C#	has	class	keyword	to	create	a	
type	or	encapsulaJon.	

• There	are	other	types	of	encapsulaJon	in	those	languages	
but	for	now	let’s	focus	on	classes	as	main	encapsulaJon	
mechanism.	

• Go	has	struct	keyword	instead	of	class	to	do	the	
same	thing.	

28
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Car.cpp

29

using namespace std; 
class Car{ 
public: 
    string make; 
    string model; 
    string year; 
    unsigned int speed; 
    unsigned int distance; 
     
    void go(int newDistance) { 
        distance += newDistance; 
    } 
     
    void accelerate(int newSpeed) { 
        speed = newSpeed; 
    } 
     
    void stop() { 
        speed = 0; 
    } 
     
    string getInfo() { 
        return "Car Info: " + year + " " + make + " " + model + ". Distance: " +    
        to_string(distance) + " km. and traveling at " + to_string(speed )  
        + " kmph."; 
    } 

// setters/getters 
};
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Car.java

30

package org.javaturk.oopl.java; 

public class Car{ 
 private String make; 
 private String model; 
 private String year; 
 private int speed; 
 private int distance; 
  
 public void go(int newDistance) { 
  distance += newDistance; 
 } 

 public void accelerate(int newSpeed) { 
  speed = newSpeed; 
 } 

 public void stop() { 
  speed = 0; 
 } 

 public String getInfo() { 
  return "Car Info: " + year + " " + make + " " + model + ". Distance: " +  
       distance + " km. and traveling at " + speed + " kmph."; 
 } 

// setters/getters 
}
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Car.cs

31

using System;  
namespace car{  
 public class Car{  
  string make;  
  string model;  
  string year;  
  int speed;  
  int distance;  
 
  public void go (int newDistance){  
   distance += newDistance;  
  }  
 
  public void accelerate (int newSpeed){  
   speed = newSpeed;  
  }  
 
  public void stop (){  
   speed = 0;  
  }  
 
  public string getInfo (){  
   return "Car Info: " + year + " " + make + " " + model + ". Distance: "  
         + distance + " km. and traveling at " + speed + " kmph.";  
  } 
       
      // setters/getters  
 }  
}
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Access Control for Classes - I

• How	do	you	can	control	the	access	to	a	class?	

• It	is	important	to	hide	some	classes	from	client	
code	so	that	they	dont	show	up	in	the	API.	

• That’s	informaJon	hiding	at	class	level!	

• In	C++	there	is	no	way	to	control	the	access	of	a	
class	through	an	access	modifier.
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Access Control for Classes - II

• In	Java	if	a	class	is	not	declared	public,	nobody	
outside	its	package	can	access	it.		

• This	is	called	default	or	friendly	accessibility.	

• In	C#,	you	can	declare	a	class	either	internal	or	
public.	

• A	class	declared	internal,	which	is	the	default	case,	can	
not	be	accessed	outside	its	current	assembly.
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Access Control for Classes - III
• The	access	control	mechanism	in	Java	is	definitely	
an	improvement	over	C++.	

• Apparently	C#	takes	over	this	approach	with	a	small	
modificaJon:	

• In	Java	granularity	of	the	access	control	mechanism	is	
finer	than	that	is	in	C#.	

• Java	prefers	package/namespace	level	control	while	C#	
prefers	assembly	level	control.	
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Access Control for Members - I

• For	the	member	level	access	control,	in	case	of	no	
modifier	used,	all	members	in	C++	and	C#	are	
private	but	in	Java	they	are	package-accessable.	

• That	means	in	default	case	C++	and	C#	behaves	
more	strictly	than	Java.	

• C#	provides	a	richer	set	of	access	control	keywords	
and	thus	granularity.
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Access Control for Members - II
• C++	and	Java	provides	three	different	keywords	for	
the	access	control	of	members:	

• public	

• protected	

• private 

• C++	provides	three	levels	of	access	while	Java	
provides	four	levels	with	the	omieed	use	of	any	
keywords.	

36
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Access Control for Members - III
• Although	public	and	private	means	the	same	
thing	in	C++	and	Java,	protected	provides	a	liele	
bit	larger	access	in	Java.	

• protected	in	both	allows	access	from	child/sub/derived	
classes,	

• protected	in	Java	allows	access	from	within	the	same	
package	as	well.	

• So	in	Java,	there	is	no	way	to	hide	a	member	from	the	
package	but	making	it	accessible	for	children!
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Access Control for Members - IV
• Like	C++,	C#	does	not	provide	package/namespace	
level	access	control	but	provides	assembly	level.	

• Assembly	level	access	control	is	achieved	by	
another	keyword	internal	

• It	is	larger	access	level	than	default/package	access	level	
in	Java.	

• For	Java	if	it	is	not	for	outside	of	a	package	that	
means	it	is	not	for	anybody	unless	from	within	a	
child!
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Access Control for Members - V

• protected	in	C#	behaves	exactly	as	in	C++	whereas	
in	Java	it	also	allows	access	from	within	the	
package.	

• Moreover	C#	allows	internal	and	protected	
keywords	to	be	used	together	to	let	both	current	
assembly	and	child	classes	to	access.	

• This	case	is	closer	to	protected	of	Java	except	C#	prefers	
current	assembly	instead	of	package.

39
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Scope

• Java	and	C#	don’t	allow	any	global	variable	or	
funcJon.	

• All	members	must	be	encapsulated	and	scoped	in	a	
class.	

• But	C++	allows	global	variables	and	funcJons	that	
have	no	class	scope.

40
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Global.h & main.cpp

41

#ifndef Global_h 
#define Global_h 

unsigned int top_speed = 200; 

void wash_car(Car car){ 
    cout << "Washing the car: " + car.getMake() + " " +  
            car.getModel() + " of " + car.getYear() << endl; 
} 

#endif /* Global_h */

// main.cpp 
Car car1; 
car1.setMake("Mercedes"); 
car1.setModel("C200"); 
car1.setYear("2017"); 
car1.setDistance(0); 
car1.setSpeed(0); 
car1.setSpeed(top_speed); 

cout << car1.getInfo() << "\n" << endl; 
     
wash_car(car1);
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Encapsulation Problem with C++

• That	means	in	C++	you	can	write	code	without	
actually	having	a	class	or	even	though	you	write	
classes	you	can	sJll	have	pracJcally	any	piece	of	
code	outside	of	any	class.	

• That	leads	to	pure	procedural	programming!

42
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Other Types of Encapsulation
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Struct & Enum Encapsulations

• Although	C++	and	C#	have	another	type	of	
encapsulaJon	called	struct	it	does	not	add	much	
of	value	to	OOP.	

• Similarly	C++,	Java	and	C#	has	enum	types	as	a	
specific	type	of	encapsulaJon.	

• Since	they	are	kind	of	helper	encapsulaJon	types	
we	don’t	focus	on	them.
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Process Encapsulation - I

• Another	type	of	encapsulaJon	packages	only	
interfaces	of	methods.	

• It	is	process	encapsulaJon	with	no	implementaJon.	

• It	provides	only	encapsulaton	of	method	interfaces	
and	does	not	provide	any	implementaJon	at	all.

45
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Process Encapsulation - II

• Java	and	C#	has	interface	keyword	to	create	such	
an	encapsulaJon.	

• C++	does	not	provide	a	specific	mechanism	in	the	
language	to	specify	define	interfaces.	

• Abstract	methods	and	classes	are	used	to	this	end.	

• But	the	way	of	Java	and	C#	is	more	elegant	and	
enhancing	OO	understanding	and	pracJce.

46
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Interfaces in Java & C#
• With	version	8,	Java	started	allowing	interfaces	to	
have	implementaJons	too.	

• This	is	done	due	to	specific	needs	Java	SE	8	faces	
when	enhancing	the	language	with	some	funcJonal	
programming	features.	

• C#	they	are	sJll	pure,	uncontaminated	interfaces!	

• But	it	looks	like	C#	8.0	will	have	default	methods	in	
interfaces.

47
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Cutter.java, Cutter.cs & Cutter.h

48

public interface Cutter { 
  
 public void cut(); 

}

#ifndef Cutter_h 
#define Cutter_h 

class Cutter{ 
     
    public: 
     
    virtual void cut() = 0; 
}; 
#endif /* Cutter_h */

using System;  
namespace Interfaces  
{  
 public interface Cutter  
 {  
  void cut ();  
 }  
}
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Inheritance
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Inheritance - I

• OOPLs	provide	mechanisms	to	create	hierarchies	
among	encapsulaJons.	

• It	is	called	inheritance.	

• Hierachies	provide	generalizaJon-specializaJon	
relaJonshsip	among	types.	

• Inheritance	is	also	called	is-a	relaJonship.

50
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Inheritance - II

• By	inheritance	the	types	that	are	lower	in	the	
hierarchy	may	inherit	two	things	from	their	parents:	

• Data	abstracJons	

• Process	abstracJons	

• Although	most	of	the	Jme	both	of	them	are	
considered	to	be	inherited	by	class	inheritance	it	is	
not	the	case	when	the	parent	is	an	interface.
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Inheritance Notation

• To	create	an	inheritace	relaJonship	C++	and	C#	uses	
“:”	notaJon	while	Java	uses	extends	keywords.

52
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F1Car.java

53

public class F1Car extends Car{ 

 private String pilot; 

 @Override 
 public void accelerate(int newSpeed) { 
  System.out.println("Faster acceleration!"); 
  speed = newSpeed; 
 } 

 @Override 
 public String getInfo() { 
  String info = super.getInfo(); 
  return info + "Pilot is " + pilot; 
 } 

 public String getPilot() { 
  return pilot; 
 } 

 public void setPilot(String pilot) { 
  this.pilot = pilot; 
 } 
}
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F1Car.h

54

class F1Car : public Car{ 
     
    private: 
    string pilot; 
     
    public: 
    string getPilot(){ 
        return pilot; 
    } 
     
    void setPilot(string pilot){ 
        this->pilot = pilot; 
    } 

 void accelerate(int newSpeed) { 
     cout << "Faster acceleration!" << endl; 

        speed = newSpeed; 
    } 
     
    string getInfo() { 
     return "F1Car Info: " + year + " " + make + " " + model + ". Distance: "  
               + to_string(distance) + " km. and traveling at "  
               + to_string(speed ) + " kmph and driven by " + pilot + "."; 
    } 
};
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Polymorphic References

• C++,	Java	and	C#	supports	polymorphic	references.	

• A	reference	of	a	parent	type	can	refer	to	any	
reference	of	its	child	types.	

• In	case	of	C++	those	references	are	pointers	
whereas	in	case	of	Java	and	C#	they	are	only	
references.

55
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CutterFactory.cs & CutterFactory.h

56

class CutterFactory { 
     
   public : 
     
   Cutter * createCutter() { 
      Cutter *cutter = NULL; 
         
      int i = (int) (3 * (double)  
               rand() / (RAND_MAX)); 
         
      switch (i) { 
          case 0: 
                cutter = new Actor; 
                break; 
          case 1: 
                cutter = new Barber; 
                break; 
          case 2: 
                cutter = new Butcher; 
                break; 
      } 
      return cutter; 
    } 
};

public class CutterFactory  
{  
 private static Random random =  
                      new Random ();  
 
 public static Cutter createCutter ()  
 {  
   Cutter cutter = null;  
 
   int i = (int)(3 * random.NextDouble ());  
 
  switch (i) {  
  case 0:  
   cutter = new Actor ();  
   break;  
  case 1:  
   cutter = new Barber ();  
   break;  
  case 2:  
   cutter = new Butcher ();  
   break;  
  }  
  return cutter;  
 
 } 
}
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Overriding

• When	a	child	class	inherits	from	its	parent	class	it	
can	override	methods	it	inherits.	

• This	is	called	overriding	and	the	methods	that	can	
be	overridden	is	called	polymorphic.
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Polymorphic Methods - I

• In	Java	all	non-staJc	methods	are	in	default	
polymorphic.	

• This	is	not	the	case	with	C++	and	C#.	

• In	default	the	methods	in	C++	and	C#	are	not	
polymorphic.	

• In	order	to	have	polymorphic	methods	in	C++	they	
need	to	be	declared	virtual.

58
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F1Car.h

59

class F1Car : public Car{ 
     
    private: 
    string pilot; 
     
    public: 
    string getPilot(){ 
        return pilot; 
    } 
     
    void setPilot(string pilot){ 
        this->pilot = pilot; 
    } 

 void accelerate(int newSpeed) { 
     cout << "Faster acceleration!" << endl; 

        speed = newSpeed; 
    } 
     
    string getInfo() { 
     return "F1Car Info: " + year + " " + make + " " + model + ". Distance: "  
               + to_string(distance) + " km. and traveling at "  
               + to_string(speed ) + " kmph and driven by " + pilot + "."; 
    } 
};
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F1Car.h

60

class F1Car : public Car{ 
     
    private: 
    string pilot; 
     
    public: 
    string getPilot(){ 
        return pilot; 
    } 
     
    void setPilot(string pilot){ 
        this->pilot = pilot; 
    } 
     
    string getInfo() { 
     return "F1Car Info: " + year + " " + make + " " + model + ". Distance: "  
               + to_string(distance) + " km. and traveling at "  
               + to_string(speed ) + " kmph and driven by " + pilot + "."; 
    } 
};
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Polymorphic Methods - II

• In	default	the	methods	in	C#	are	sealed	and	need	
to	be	declared	by	virtual	keyword	preceeding	it	to	
be	polymorphic.	

• This	main	difference	between	Java’s	and	C++/C#’s	
methods	I	believe	stresses	the	mind	sets	between	
Java	and	these	two	languages.
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Final/Sealed Classes and Methods

• Java	provides	final	classes	so	that	they	may	not	be	
extended.	

• Java	also	provides	final	methods	so	that	they	may	
not	be	overriden.	

• C#	uses	sealed	keyword	to	provide	the	same	thing.
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Multiple Inheritance - I

• While	C++	allows	a	class	to	inherit	from	more	than	
one	class	Java	and	C#	don’t.	

• Allowing	mulJple	class	inheritance	causes	infamous	
diamond	problem.	

• C++	mostly	solves	this	problem	by	enforcing	
overriding	the	method	that	causes	this.
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Multiple Inheritance - II
• Although	Java	and	C#	don’t	provide	mulJple	class	
inheritance,	they	do	provide	mulJple	inheritance	
when	only	interface	not	the	implementaJon	is	
inherited.	

• So	using	interfaces	is	another	way	to	implement	mulJple	
inheritance	in	Java	and	C#.	

• A	class	can	inherit	from	mulJple	interfaces.	

• Due	to	radically	changed	nature	of	interfaces	in	Java	
SE	8,	infamous	diamond	problem	occurs.
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To Sum Up

65

http://www.selsoft.academy


www.selsoft.academy

C++ - I

• C++	is	a	hybrid	langauge	that	allows	both	pure	
procedural	and	pure	object-oriented	programming.	

• I	guess	this	hybrid	nature	of	C++	is	due	to	mainly	
two	facts:	

• C++	hasn’t	been	designed	from	scratch,	designed	to	be	a	
beeer	C,	so	it	is	like	an	add-on	to	C.	

• C++	is	designed	for	any	possible	programming	tasks.
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C++ - II

• This	makes	C++	very	applicable	and	less-verbose	for	
lower-level	tasks	that	does	not	need	to	have	
objects.	

• On	the	other	hand	the	procedural	aspects	of	C++	
can	be	considered	a	way	to	flee	from	objects.
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C++, Java and C#

• Despite	all	its	problems	C++	is	a	huge	improvement	
with	its	object	mechanisms	to	rather	a	slow	
transiJon	to	OOP	while	being	sJll	best	fit	for	
procedural	style.	

• IMHO	Java	was	the	language	to	complete	this	
transiJon	with	lots	of	prunning	and	correcJons.	

• And	C#	was	the	MicrosoPian	way	of	Java.

68



www.selsoft.academy

Java and C#

• In	this	sense	C#	was	not	a	revoluJonary	language	
but	more	like	a	Java-like	language	with	MicrosoP	
style.	

• C#	reflects	every	single	pragmaJsm	of	MicrosoP	in	
that	frequent	releases,	rich	feature	sets	and	totally	
tool	oriented	programming	through	skillful	VS	IDE	
to	let	almost	anybody	to	write	C#	code.
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Chain of Languages
• When	I	think	of	the	chain	of	languages	in	general	
purpose	and	large-scale	soPware	development	it	
goes	as	C/C++,	Java	and	C#.	

• There	are	some	alternaJves	such	as	Python	and	Go.	

• But	I	think	neither	Pyhton	nor	Go	will	become	a	
language	for	mainstream	development	although	
they	may	be	good	at	specific	aspects	of	enterprise	
development.
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Object-Oriented Development - I

• Developing	soPware	is	hard.	

• Developing	OO	soPware	is	sJll	hard.	

• That's	because	the	hardest	aspect	of	OO	development	is	
to	find	the	objects	themselves!	

• Developing	easily	understandable	and	changeable	
OO	soPware	is	even	much	harder.
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Object-Oriented Development - II
• In	daily	life	we	mentally	construct	lots	of	new	
abstracJons	and	revise	the	exisJng	ones	
conJnuously.		

• But	in	soPware	world,	managing	such	a	dynamic	
change	is	almost	impossible.	

• OOPLs	provide	beeer	ways	to	parJJon	the	
soPware	systems	into	logical	units	making	the	
system	more	managable	and	intelligable	although	
different	langauges	chooses	different	ways.
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