
Selsoft Academy

OOP from Different Language
Perspectives:
C++, Java, C#

Akın Kaldıroğlu

13 Septemper 2017

www.selsoft.academy

Agenda
• Discussing	the	choices	of	different	languages	to	
implement	the	mechanisms	of	object-oriented	
programming.	

• Languages	discussed	are	C++,	Java,	C#	in	historical	
order.	

• I	tried	to	come	up	with	the	languages	that	reflect	
the	development	of	our	understanding	of	OOP	
since	80’s.

2

www.selsoft.academy

Several Points - I

• I	want	to	proceed	in	this	talk	rather	in	a	more	
interacJve	manner	so	please	feel	free	to	join	the	
talk.	

• Different	languages	have	different	cultures	or	
convenJons	including	naming	and	represenJng	
things.	

• Main	convenJon	in	this	work	is	that	of	Java	although	I	try	
to	observe	others	as	much	as	I	know.

3

www.selsoft.academy

Several Points

• Due	to	changes	and	improvements	in	different	
versions	of	languages	I	menJoned	here	I	may	make	
mistakes	about	their	features	so	please	don’t	
hesitate	to	correct	or	suggest	an	alternaJve	
regarding	the	issue.

4

www.selsoft.academy

Theory

5

http://www.selsoft.academy

www.selsoft.academy

Software and Objects

• An	Aristotalian	deducJon:	

• SoPware	systems	are	simulaJons	of	the	World,	

• World	can	be	seen	as	totality	of	objects	(or	facts?),	

• So	soPware	systems	can	be	seen	as	simulaJons	of		
objects	of	the	World.	

• Construc*ng	so-ware	systems	using	objects	is	the	most	
natural	way	to	develop	so-ware.

6

www.selsoft.academy

What is Object? - I
• English	word	object	stems	from	LaJn	word	obiectus	
(or	objectus),	passive	parJciple	of	obicio.	

• Obicio	in	LaJn	means	“throw	or	put	in	front	of	or	before”	

• ob	means	towards,	against,	jacere	means	to	throw,	to	put	

• object	vs.	inject!	

• Object	is	anything	against	the	subject,	which	is	the	
mind,	

• Object	is	anything	the	mind	percieves	or	think.
7

www.selsoft.academy

What is Object? - II
• In	archaic	Greek	object	is	αντικείμενο	
(an8keimena),	meaning	karşıdaki	şey		

• In	Osmanlıca,	it	is	müteallak/mütekabil	

• Taalluk:	İlgisi	olma,	ilgi,	bağlan^	

• Tekabül:	Karşılık	olma	

• In	modern	Turkish,	it	is	nesne,	ne	ise	(nesene,	nim	
érse)

8

www.selsoft.academy

What is Object? - III

• Philosophically,	object	is	bundle	of	qualiJes/
properJes.	

• So	what	are	those	qualiJes?

9

www.selsoft.academy

Categories

• According	to	Aristotle,	there	are	10	types	of	things.	

• Substance	can	exist	as	its	own	and	all	others	can	only	exist	
as	long	as	they	are	aeributed	to	or	said	of	a	substance.

10

www.selsoft.academy 11

www.selsoft.academy

Properties of Objects

• So	a	substance	may	have	some	properJes	
expressed	in	terms	of	countable,	uncountable,	
temporal	and	posiJonal	qualiJes,	

• It	holds	some	relaJonships	with	other	substances,	

• It	has	some	acJons	or	behaviors	and	

• It	receives	some	events.

12

www.selsoft.academy

Substance of Object

• It	is	substance	that	holds	all	properJes	and	
behaviors	that	can	be	said	of	the	objects	of	that	
substance.	

• Substance	is	the	form	or	archetype	of	object.	

• Substance	is	the	common	structure	of	the	objects	
of	the	same	form.

13

www.selsoft.academy

Relationships Among Substances

• Different	substances	can	have	relaJonships	among	
themselves.	

• Substances	may	be	aeributed	to	other	substances.	

• Substances	may	have	hierarchies.

14

www.selsoft.academy

Association Among Substances

• Substances	may	be	aeributed	to	or	associated	with	
other	substances.	

• A	substance	may	be	a	quality	of	another.	

• When	a	substance	is	aeributed	to	another	
substance,	relaJonship	among	them	seem	to	be	
more	contact	point-oriented	i.e.	interacJons	
happen	on	specific	contact	points	on	substances	
leaving	unrelated	aspects	untouched.	

15

www.selsoft.academy

Substance Hierarchies

• Substances	may	have	hierarchies.	

• Substances	lower	in	the	hierarchy	share	the	same	
qualiJes	of	the	substances	in	the	upper.	

• This	is	called	inheritance

16

www.selsoft.academy 17

Natural Objects

Plant Animal Mineral

Mammal Fish Bird Reptile Amphibian Insect

Dog Cow Monkey . . .

www.selsoft.academy

Transition from Theory

18

http://www.selsoft.academy

www.selsoft.academy

Programming Languages

• Programming	languages	are	for	developing	
soPware	systems.	

• Programming	languages	that	have	mechanisms	to	
apply	the	ontology	menJoned	before	are	called	
object-oriented.

19

www.selsoft.academy

Object of Software - I
• In	terms	of	object	of	the	soFware,		

• qualiJes	are	expressed	in	terms	of	different	types	of	data,	

• acJons	and	events	are	expressed	in	terms	of	funcJons	or	
methods.	

• Each	quality	of	the	object	is	called	data	member,	
field	or	property.	

• Totality	of	the	methods	that	can	be	called	on	an	
object	is	called	interface.

20

www.selsoft.academy

Encapsulation & Information Hiding

• Packaging	a	substance	with	its	properJes	and	
methods	is	called	encapsula*on.	

• An	encapsulated	substance	turns	to	a	type	in	OOPLs.		

• EncapsulaJons	mostly	have	a	complementary	
mechanism	called	informa*on	hiding	to	abstract	
away	from	others	its	complexiJes	regarding	its	
inner	workings.

21

www.selsoft.academy

Programming Abstractions - I

• OOPLs	mainly	abstract	two	things	in	a	type:	

• Data	abstracJon:	It	abstracts	away	the	inner	complexiJes	
of	abstract	data	types.	

• Process	abstracJon:	It	abstracts	away	how	data	is	
processed.

22

www.selsoft.academy

Programming Abstractions - II

• OOPLs	should	also	have	mechanisms	to	express	
relaJonships	among	types	i.e.	associaJons	and	
inheritance.	

• Moreover	OOPLs	should	provide	access	control	
mechanisms	to	enforce	informaJon	hiding.

23

www.selsoft.academy

Good Software

• Good	soPware	systems	are	those	that	

• do	what	is	expected	by	their	users	correctly,	

• do	it	using	a	reasonable	amount	of	resources,	

• are	easy	to	understand	and	maintain	which	is	mainly	
modifiying	by	adding	new	funcJonaliJes.	

• Which	one	do	you	thing	is	the	most	difficult?	Can	
you	order	them?

24

www.selsoft.academy

Coupling and Cohesion

• To	create	easy-to-understand-and-maintain	
soPware	systems	we	need	to	make	types	highly-
cohesive	and	lowly-coupled.	

• So	as	the	types	of	the	soPware	should	correctly	
depict	the	substances	of	the	real	world

25

www.selsoft.academy

Implementation

26

http://www.selsoft.academy

www.selsoft.academy

Encapsulation

27

http://www.selsoft.academy

www.selsoft.academy

Encapsulation in OOPLs

• C++,	Java	and	C#	has	class	keyword	to	create	a	
type	or	encapsulaJon.	

• There	are	other	types	of	encapsulaJon	in	those	languages	
but	for	now	let’s	focus	on	classes	as	main	encapsulaJon	
mechanism.	

• Go	has	struct	keyword	instead	of	class	to	do	the	
same	thing.	

28

www.selsoft.academy

Car.cpp

29

using namespace std;
class Car{
public:
 string make;
 string model;
 string year;
 unsigned int speed;
 unsigned int distance;

 void go(int newDistance) {
 distance += newDistance;
 }

 void accelerate(int newSpeed) {
 speed = newSpeed;
 }

 void stop() {
 speed = 0;
 }

 string getInfo() {
 return "Car Info: " + year + " " + make + " " + model + ". Distance: " +
 to_string(distance) + " km. and traveling at " + to_string(speed)
 + " kmph.";
 }

// setters/getters
};

www.selsoft.academy

Car.java

30

package org.javaturk.oopl.java;

public class Car{
 private String make;
 private String model;
 private String year;
 private int speed;
 private int distance;

 public void go(int newDistance) {
 distance += newDistance;
 }

 public void accelerate(int newSpeed) {
 speed = newSpeed;
 }

 public void stop() {
 speed = 0;
 }

 public String getInfo() {
 return "Car Info: " + year + " " + make + " " + model + ". Distance: " +
 distance + " km. and traveling at " + speed + " kmph.";
 }

// setters/getters
}

www.selsoft.academy

Car.cs

31

using System;  
namespace car{  
 public class Car{  
 string make;  
 string model;  
 string year;  
 int speed;  
 int distance;  
 
 public void go (int newDistance){  
 distance += newDistance;  
 }  
 
 public void accelerate (int newSpeed){  
 speed = newSpeed;  
 }  
 
 public void stop (){  
 speed = 0;  
 }  
 
 public string getInfo (){  
 return "Car Info: " + year + " " + make + " " + model + ". Distance: "
 + distance + " km. and traveling at " + speed + " kmph.";  
 }

 // setters/getters  
 }  
}

www.selsoft.academy

Access Control for Classes - I

• How	do	you	can	control	the	access	to	a	class?	

• It	is	important	to	hide	some	classes	from	client	
code	so	that	they	dont	show	up	in	the	API.	

• That’s	informaJon	hiding	at	class	level!	

• In	C++	there	is	no	way	to	control	the	access	of	a	
class	through	an	access	modifier.

32

www.selsoft.academy

Access Control for Classes - II

• In	Java	if	a	class	is	not	declared	public,	nobody	
outside	its	package	can	access	it.		

• This	is	called	default	or	friendly	accessibility.	

• In	C#,	you	can	declare	a	class	either	internal	or	
public.	

• A	class	declared	internal,	which	is	the	default	case,	can	
not	be	accessed	outside	its	current	assembly.

33

www.selsoft.academy

Access Control for Classes - III
• The	access	control	mechanism	in	Java	is	definitely	
an	improvement	over	C++.	

• Apparently	C#	takes	over	this	approach	with	a	small	
modificaJon:	

• In	Java	granularity	of	the	access	control	mechanism	is	
finer	than	that	is	in	C#.	

• Java	prefers	package/namespace	level	control	while	C#	
prefers	assembly	level	control.	

34

www.selsoft.academy

Access Control for Members - I

• For	the	member	level	access	control,	in	case	of	no	
modifier	used,	all	members	in	C++	and	C#	are	
private	but	in	Java	they	are	package-accessable.	

• That	means	in	default	case	C++	and	C#	behaves	
more	strictly	than	Java.	

• C#	provides	a	richer	set	of	access	control	keywords	
and	thus	granularity.

35

www.selsoft.academy

Access Control for Members - II
• C++	and	Java	provides	three	different	keywords	for	
the	access	control	of	members:	

• public	

• protected	

• private

• C++	provides	three	levels	of	access	while	Java	
provides	four	levels	with	the	omieed	use	of	any	
keywords.	

36

www.selsoft.academy

Access Control for Members - III
• Although	public	and	private	means	the	same	
thing	in	C++	and	Java,	protected	provides	a	liele	
bit	larger	access	in	Java.	

• protected	in	both	allows	access	from	child/sub/derived	
classes,	

• protected	in	Java	allows	access	from	within	the	same	
package	as	well.	

• So	in	Java,	there	is	no	way	to	hide	a	member	from	the	
package	but	making	it	accessible	for	children!

37

www.selsoft.academy

Access Control for Members - IV
• Like	C++,	C#	does	not	provide	package/namespace	
level	access	control	but	provides	assembly	level.	

• Assembly	level	access	control	is	achieved	by	
another	keyword	internal	

• It	is	larger	access	level	than	default/package	access	level	
in	Java.	

• For	Java	if	it	is	not	for	outside	of	a	package	that	
means	it	is	not	for	anybody	unless	from	within	a	
child!

38

www.selsoft.academy

Access Control for Members - V

• protected	in	C#	behaves	exactly	as	in	C++	whereas	
in	Java	it	also	allows	access	from	within	the	
package.	

• Moreover	C#	allows	internal	and	protected	
keywords	to	be	used	together	to	let	both	current	
assembly	and	child	classes	to	access.	

• This	case	is	closer	to	protected	of	Java	except	C#	prefers	
current	assembly	instead	of	package.

39

www.selsoft.academy

Scope

• Java	and	C#	don’t	allow	any	global	variable	or	
funcJon.	

• All	members	must	be	encapsulated	and	scoped	in	a	
class.	

• But	C++	allows	global	variables	and	funcJons	that	
have	no	class	scope.

40

www.selsoft.academy

Global.h & main.cpp

41

#ifndef Global_h
#define Global_h

unsigned int top_speed = 200;

void wash_car(Car car){
 cout << "Washing the car: " + car.getMake() + " " +
 car.getModel() + " of " + car.getYear() << endl;
}

#endif /* Global_h */

// main.cpp
Car car1;
car1.setMake("Mercedes");
car1.setModel("C200");
car1.setYear("2017");
car1.setDistance(0);
car1.setSpeed(0);
car1.setSpeed(top_speed);

cout << car1.getInfo() << "\n" << endl;

wash_car(car1);

www.selsoft.academy

Encapsulation Problem with C++

• That	means	in	C++	you	can	write	code	without	
actually	having	a	class	or	even	though	you	write	
classes	you	can	sJll	have	pracJcally	any	piece	of	
code	outside	of	any	class.	

• That	leads	to	pure	procedural	programming!

42

www.selsoft.academy

Other Types of Encapsulation

43

http://www.selsoft.academy

www.selsoft.academy

Struct & Enum Encapsulations

• Although	C++	and	C#	have	another	type	of	
encapsulaJon	called	struct	it	does	not	add	much	
of	value	to	OOP.	

• Similarly	C++,	Java	and	C#	has	enum	types	as	a	
specific	type	of	encapsulaJon.	

• Since	they	are	kind	of	helper	encapsulaJon	types	
we	don’t	focus	on	them.

44

www.selsoft.academy

Process Encapsulation - I

• Another	type	of	encapsulaJon	packages	only	
interfaces	of	methods.	

• It	is	process	encapsulaJon	with	no	implementaJon.	

• It	provides	only	encapsulaton	of	method	interfaces	
and	does	not	provide	any	implementaJon	at	all.

45

www.selsoft.academy

Process Encapsulation - II

• Java	and	C#	has	interface	keyword	to	create	such	
an	encapsulaJon.	

• C++	does	not	provide	a	specific	mechanism	in	the	
language	to	specify	define	interfaces.	

• Abstract	methods	and	classes	are	used	to	this	end.	

• But	the	way	of	Java	and	C#	is	more	elegant	and	
enhancing	OO	understanding	and	pracJce.

46

www.selsoft.academy

Interfaces in Java & C#
• With	version	8,	Java	started	allowing	interfaces	to	
have	implementaJons	too.	

• This	is	done	due	to	specific	needs	Java	SE	8	faces	
when	enhancing	the	language	with	some	funcJonal	
programming	features.	

• C#	they	are	sJll	pure,	uncontaminated	interfaces!	

• But	it	looks	like	C#	8.0	will	have	default	methods	in	
interfaces.

47

www.selsoft.academy

Cutter.java, Cutter.cs & Cutter.h

48

public interface Cutter {

 public void cut();

}

#ifndef Cutter_h
#define Cutter_h

class Cutter{

 public:

 virtual void cut() = 0;
};
#endif /* Cutter_h */

using System;  
namespace Interfaces  
{  
 public interface Cutter  
 {  
 void cut ();  
 }  
}

www.selsoft.academy

Inheritance

49

http://www.selsoft.academy

www.selsoft.academy

Inheritance - I

• OOPLs	provide	mechanisms	to	create	hierarchies	
among	encapsulaJons.	

• It	is	called	inheritance.	

• Hierachies	provide	generalizaJon-specializaJon	
relaJonshsip	among	types.	

• Inheritance	is	also	called	is-a	relaJonship.

50

www.selsoft.academy

Inheritance - II

• By	inheritance	the	types	that	are	lower	in	the	
hierarchy	may	inherit	two	things	from	their	parents:	

• Data	abstracJons	

• Process	abstracJons	

• Although	most	of	the	Jme	both	of	them	are	
considered	to	be	inherited	by	class	inheritance	it	is	
not	the	case	when	the	parent	is	an	interface.

51

www.selsoft.academy

Inheritance Notation

• To	create	an	inheritace	relaJonship	C++	and	C#	uses	
“:”	notaJon	while	Java	uses	extends	keywords.

52

www.selsoft.academy

F1Car.java

53

public class F1Car extends Car{

 private String pilot;

 @Override
 public void accelerate(int newSpeed) {
 System.out.println("Faster acceleration!");
 speed = newSpeed;
 }

 @Override
 public String getInfo() {
 String info = super.getInfo();
 return info + "Pilot is " + pilot;
 }

 public String getPilot() {
 return pilot;
 }

 public void setPilot(String pilot) {
 this.pilot = pilot;
 }
}

www.selsoft.academy

F1Car.h

54

class F1Car : public Car{

 private:
 string pilot;

 public:
 string getPilot(){
 return pilot;
 }

 void setPilot(string pilot){
 this->pilot = pilot;
 }

 void accelerate(int newSpeed) {
 cout << "Faster acceleration!" << endl;

 speed = newSpeed;
 }

 string getInfo() {
 return "F1Car Info: " + year + " " + make + " " + model + ". Distance: "
 + to_string(distance) + " km. and traveling at "
 + to_string(speed) + " kmph and driven by " + pilot + ".";
 }
};

www.selsoft.academy

Polymorphic References

• C++,	Java	and	C#	supports	polymorphic	references.	

• A	reference	of	a	parent	type	can	refer	to	any	
reference	of	its	child	types.	

• In	case	of	C++	those	references	are	pointers	
whereas	in	case	of	Java	and	C#	they	are	only	
references.

55

www.selsoft.academy

CutterFactory.cs & CutterFactory.h

56

class CutterFactory {

 public :

 Cutter * createCutter() {
 Cutter *cutter = NULL;

 int i = (int) (3 * (double)
 rand() / (RAND_MAX));

 switch (i) {
 case 0:
 cutter = new Actor;
 break;
 case 1:
 cutter = new Barber;
 break;
 case 2:
 cutter = new Butcher;
 break;
 }
 return cutter;
 }
};

public class CutterFactory  
{  
 private static Random random =
 new Random ();  
 
 public static Cutter createCutter ()  
 {  
 Cutter cutter = null;  
 
 int i = (int)(3 * random.NextDouble ());  
 
 switch (i) {  
 case 0:  
 cutter = new Actor ();  
 break;  
 case 1:  
 cutter = new Barber ();  
 break;  
 case 2:  
 cutter = new Butcher ();  
 break;  
 }  
 return cutter;  
 
 }
}

www.selsoft.academy

Overriding

• When	a	child	class	inherits	from	its	parent	class	it	
can	override	methods	it	inherits.	

• This	is	called	overriding	and	the	methods	that	can	
be	overridden	is	called	polymorphic.

57

www.selsoft.academy

Polymorphic Methods - I

• In	Java	all	non-staJc	methods	are	in	default	
polymorphic.	

• This	is	not	the	case	with	C++	and	C#.	

• In	default	the	methods	in	C++	and	C#	are	not	
polymorphic.	

• In	order	to	have	polymorphic	methods	in	C++	they	
need	to	be	declared	virtual.

58

www.selsoft.academy

F1Car.h

59

class F1Car : public Car{

 private:
 string pilot;

 public:
 string getPilot(){
 return pilot;
 }

 void setPilot(string pilot){
 this->pilot = pilot;
 }

 void accelerate(int newSpeed) {
 cout << "Faster acceleration!" << endl;

 speed = newSpeed;
 }

 string getInfo() {
 return "F1Car Info: " + year + " " + make + " " + model + ". Distance: "
 + to_string(distance) + " km. and traveling at "
 + to_string(speed) + " kmph and driven by " + pilot + ".";
 }
};

www.selsoft.academy

F1Car.h

60

class F1Car : public Car{

 private:
 string pilot;

 public:
 string getPilot(){
 return pilot;
 }

 void setPilot(string pilot){
 this->pilot = pilot;
 }

 string getInfo() {
 return "F1Car Info: " + year + " " + make + " " + model + ". Distance: "
 + to_string(distance) + " km. and traveling at "
 + to_string(speed) + " kmph and driven by " + pilot + ".";
 }
};

www.selsoft.academy

Polymorphic Methods - II

• In	default	the	methods	in	C#	are	sealed	and	need	
to	be	declared	by	virtual	keyword	preceeding	it	to	
be	polymorphic.	

• This	main	difference	between	Java’s	and	C++/C#’s	
methods	I	believe	stresses	the	mind	sets	between	
Java	and	these	two	languages.

61

www.selsoft.academy

Final/Sealed Classes and Methods

• Java	provides	final	classes	so	that	they	may	not	be	
extended.	

• Java	also	provides	final	methods	so	that	they	may	
not	be	overriden.	

• C#	uses	sealed	keyword	to	provide	the	same	thing.

62

www.selsoft.academy

Multiple Inheritance - I

• While	C++	allows	a	class	to	inherit	from	more	than	
one	class	Java	and	C#	don’t.	

• Allowing	mulJple	class	inheritance	causes	infamous	
diamond	problem.	

• C++	mostly	solves	this	problem	by	enforcing	
overriding	the	method	that	causes	this.

63

www.selsoft.academy

Multiple Inheritance - II
• Although	Java	and	C#	don’t	provide	mulJple	class	
inheritance,	they	do	provide	mulJple	inheritance	
when	only	interface	not	the	implementaJon	is	
inherited.	

• So	using	interfaces	is	another	way	to	implement	mulJple	
inheritance	in	Java	and	C#.	

• A	class	can	inherit	from	mulJple	interfaces.	

• Due	to	radically	changed	nature	of	interfaces	in	Java	
SE	8,	infamous	diamond	problem	occurs.

64

www.selsoft.academy

To Sum Up

65

http://www.selsoft.academy

www.selsoft.academy

C++ - I

• C++	is	a	hybrid	langauge	that	allows	both	pure	
procedural	and	pure	object-oriented	programming.	

• I	guess	this	hybrid	nature	of	C++	is	due	to	mainly	
two	facts:	

• C++	hasn’t	been	designed	from	scratch,	designed	to	be	a	
beeer	C,	so	it	is	like	an	add-on	to	C.	

• C++	is	designed	for	any	possible	programming	tasks.

66

www.selsoft.academy

C++ - II

• This	makes	C++	very	applicable	and	less-verbose	for	
lower-level	tasks	that	does	not	need	to	have	
objects.	

• On	the	other	hand	the	procedural	aspects	of	C++	
can	be	considered	a	way	to	flee	from	objects.

67

www.selsoft.academy

C++, Java and C#

• Despite	all	its	problems	C++	is	a	huge	improvement	
with	its	object	mechanisms	to	rather	a	slow	
transiJon	to	OOP	while	being	sJll	best	fit	for	
procedural	style.	

• IMHO	Java	was	the	language	to	complete	this	
transiJon	with	lots	of	prunning	and	correcJons.	

• And	C#	was	the	MicrosoPian	way	of	Java.

68

www.selsoft.academy

Java and C#

• In	this	sense	C#	was	not	a	revoluJonary	language	
but	more	like	a	Java-like	language	with	MicrosoP	
style.	

• C#	reflects	every	single	pragmaJsm	of	MicrosoP	in	
that	frequent	releases,	rich	feature	sets	and	totally	
tool	oriented	programming	through	skillful	VS	IDE	
to	let	almost	anybody	to	write	C#	code.

69

www.selsoft.academy

Chain of Languages
• When	I	think	of	the	chain	of	languages	in	general	
purpose	and	large-scale	soPware	development	it	
goes	as	C/C++,	Java	and	C#.	

• There	are	some	alternaJves	such	as	Python	and	Go.	

• But	I	think	neither	Pyhton	nor	Go	will	become	a	
language	for	mainstream	development	although	
they	may	be	good	at	specific	aspects	of	enterprise	
development.

70

www.selsoft.academy

Object-Oriented Development - I

• Developing	soPware	is	hard.	

• Developing	OO	soPware	is	sJll	hard.	

• That's	because	the	hardest	aspect	of	OO	development	is	
to	find	the	objects	themselves!	

• Developing	easily	understandable	and	changeable	
OO	soPware	is	even	much	harder.

71

www.selsoft.academy

Object-Oriented Development - II
• In	daily	life	we	mentally	construct	lots	of	new	
abstracJons	and	revise	the	exisJng	ones	
conJnuously.		

• But	in	soPware	world,	managing	such	a	dynamic	
change	is	almost	impossible.	

• OOPLs	provide	beeer	ways	to	parJJon	the	
soPware	systems	into	logical	units	making	the	
system	more	managable	and	intelligable	although	
different	langauges	chooses	different	ways.

72

www.selsoft.academy

Resources

• Concept	of	Programming	Languages	11th	ed.,	
Global	Ed.	Sabesta,	R.	W.,	Pearson,	2016	

• Object-Oriented	Thought	Process	3rd	ed.,	
Weisfeld,	M.,	Addison-Wesley,	2009	

• Touch	of	Class,	Meyer,	B.,	Springer,	2009	

http://www.selsoft.academy

www.selsoft.academy

Dinlediğiniz	için	teşekkür	ederim.	
Bu	sunuma	

	hCp://www.javaturk.org		

adresinden	ulaşabilirsiniz.	

http://www.selsoft.academy
http://www.javaturk.org

