Design Patterns

Akin Kaldiroglu

akin @javaturk.org

February 24th 2015

mailto:akin@javaturk.org
http://www.JavaTurk.org

Akin Kaldiroglu?

« He is from Ayvalik; an Eagean child :)

« An ITU graduate, 1990.

« He has lived in US to get graduate study
in CE and SWE and worked as
developer in different companies.

« He lives on giving consultancy and
training on Java and SWE.

- Keeps a blog at www.javaturk.org.

« Music, philosophy and his kids are
among what he loves most.

- akin@javaturk.org, @kaldiroglu

http://www.JavaTurk.org
http://www.javaturk.org
mailto:akin@javaturk.org

Seminars

 As part of my social responsibility I keep giving in
class or online seminars on different topics:

Clean Code

Design Patterns

Top-10 Reasons That Your Java Code is not Object-Oriented
Java 8 and Functional Programming

JVM and Its Tuning

What Does Being a Programmer Mean?

www.JavaTurk.org

http://www.JavaTurk.org

Agenda

» Nature of Software
 Principles of Systems
» Design Patterns

A Case Study: Proxy Pattern

www.JavaTurk.org

4

http://www.JavaTurk.org

It isn't that they can't see the solution.
It is that they can't see the problem.

G. K. Chesterton,
The Point of a Pin in The Scandal of Father Brown

www.JavaTurk.org

http://www.JavaTurk.org

Nature of Software

« The most essential properties of software is
complexity and change.

« Itis highly complex and infinitely changeable.

The most radical possible solution for constructing
software is not to construct it at all.

F. Brooks in No Silver Bullet

www.JavaTurk.org 6

http://www.JavaTurk.org

Software is Complex - |

 Software has been claimed to be more complex
comparing to many other engineering products
or scientific works:

« Abstract-conceptual, intellectual, has no physical
limits,

« Invisible, hard to think about and comprehend,

« Mostly unique, many factors that make a piece of
software different from other pieces.

www.JavaTurk.orqg 7

http://www.JavaTurk.org

Software is Complex - |

 Software systems have too many number of states,

« Impossible to define, design and test them exhaustively,

« Most probably the easiest part is coding.

* Pieces of software system are all unique otherwise
we combine similar parts into a single unit

 So having a “bigger” software can only be achieved
adding new, unique parts not just enlarging the
existing ones!

 Relationships among pieces of software are not linear.

www.JavaTurk.org 8

http://www.JavaTurk.org

Hard To Comprehend

How the customer explained it

How the Project Leader
understood it

How the Analyst designed it

How the Programmer wrote it

How the Business Consultant
described it

How the project was
documented

What operations installed

How the customer was billed

How it was supported

What the customer really
needed

www.JavaTurk.org

http://www.JavaTurk.org

Wood’s Task Complexity

 In a paper titled “Task Complexity: Definition of
The Construct”, 1986, R. E. Wood claimed that
there are three factors that determine the
complexity of a task:

« products of the task
« required acts for the task

 information cues for the task

www.JavaTurk.org 10

http://www.JavaTurk.org

Wood’s Task Complexity

Product

http://www.JavaTurk.org

Wood’s Approach to Software

 If we apply Wood's formulation to software:
« Products are the outputs of the software

 Acts are the program units such as classes and
methods in the software

« Information cues are the data tokens that are
processed in the program units i.e. the acts.

www.JavaTurk.org 12

http://www.JavaTurk.org

Types of Complexities

« Component Complexity = f(

of distinct acts,

of information cues) = f{complexity of the acts +
complexity of information cues)

among the acts)

Coordinative Complexity = f{relationships

S0, what do these two mean to you?

http://www.JavaTurk.org

« Component complexity is determined by how the
acts and data/inf. are together => togetherness

« Togetherness means being focused on one thing while
excluding anything else.

« Easier comprehension!

- High-cohesion

www.JavaTurk.org

14

http://www.JavaTurk.org

Coupling

« Coordinative complexity is a measure of how an
act is related to others => relatedness

« LLow relatedness means lower amount of information
about others

« Easier comprehension!

« Low-coupling

www.JavaTurk.org

15

http://www.JavaTurk.org

Know Yourself and Don’t Gossip!

Highly-cohesive and lowly-coupled systems tend to know
more about themselves and less about others.

« Objects should know only themselves but everything about
themselves!

« It should not allow any spread of their responsibilities to other
objects.

« Objects should know as less as possible about others! Objects don’t
gossip!

More cohesion means less coupling!

Highly-cohesive and lowly-coupled systems make
comprehension easier.

www.JavaTurk.org

16

http://www.JavaTurk.org

Software Constantly Changes

e Maintenance is mostly changing the software

 In other engineering products, what is changed
is either broken or worn out parts

 In software new requirements are the main
driver behind the change

17

http://www.JavaTurk.org

Design for Change

 So highly-cohesive and lowly-coupled systems
can be changed more easily than otherwise,

« Change requires comprehension.

 Since maintenance costs more than
development, don’t design only for development.

- Design for change

18

http://www.JavaTurk.org

High and Low Cohesion

Low Cohesion

SystemServices

makeEmployee
makeDepartment
login

logout
deleteEmployee
deleteDepartment
retrieveEmpByName
retrieveDeptByID

High Cohesion

LoginService

login
logout

EmployeeService |

High coupling!

AN !
makeEmployee
deleteEmployee
retrieveEmpByName

DepartmentService I

makeDepartment
deleteDepartment
retrieveDeptByID

Lower coupling!

www.JavaTurk.org

19

http://www.JavaTurk.org

Cohesion & Coupling

 No infinitive cohesion nor zero-coupling!

 Quality of coupling is important.

Program Coupled .| Program
unit 1 unif 3
High
cohesion

Low
Coupled cohesion

Program High
unit 2 cohesion

www.JavaTurk.org 20

http://www.JavaTurk.org

Kinds of Coupling

No Coupling Abstract Coupling

I Service
{abstract}

\ | ‘ I | Supplier |
Client - Service
‘ Client \---;>|“lnterface»\
Service

Tight Coupling

Client Service Client

Loose Coupling

Client Service | I Supplier |

www.JavaTurk.org 21

http://www.JavaTurk.org

Abstract Coupling

Schedule oo ___< «interface»
Scheduleable
I
+add(:Scheduleable, .
:DateTime, +get9b]ectID():¥D.
:Duration) +notifyAboutActivity()
+remove(:Scheduleable) Zﬁ&
+notify(:DateTime) [
l
I I I
l | |
Employee Equipment ‘I ConfRoom

www.JavaTurk.org 22

http://www.JavaTurk.org

Lower Coupling

« Lower coupling can only be achieved through
interface coupling (or message coupling).

« Program to an interface, not an implementation

« Reason of existence of a class can only be its
responsibilities

« Responsibilities can only be revealed through interface

« Objects only know about their responsibilities

- Responsibility-driven design

www.JavaTurk.org 23

http://www.JavaTurk.org

What is Design Pattern? |

« Design patterns, through object-oriented
principles, let us

« find responsibilities correctly,

« distribute those responsibilities among the objects by
paying attention to cohesion, coupling and change,

« Design patterns solves frequently seen software
design problems in terms of highly-cohesive and
lowly-coupling objects.

www.JavaTurk.org 24

http://www.JavaTurk.org

What is Design Pattern? ||

« Christopher Alexander says, "Each pattern
describes a problem which occurs over and over
again in our environment, and then describes the
core of the solution to that problem, in such a way
that you can use this solution a million times over,
without ever doing it the same way twice"

« In this sense, a design pattern is an abstract and
reusable solution.

www.JavaTurk.org 25

http://www.JavaTurk.org

Repeating Desing Problems - |

« How to create objects?

« How to create complex objects?

« How to control the access to an object?

« How to specity multiple ways of performing a task
interchangeably?

« How to give commands to objects? How to
implements do/redo/undo structures?

« How to implement event mechanisms among objects?

www.JavaTurk.org

26

http://www.JavaTurk.org

Repeating Desing Problems - |

- How to give different abilities to objects during
their lifetimes?

« How to manages complex states of an object?

« How to save the state of an object and retrieve it
later?

« How to handle many objects as bundle?

- How to apply an operation to many objects?

27

http://www.JavaTurk.org

Constituents of Desing Patterns

Name
Intent

Problem/Motivation

Solution/Structure

Participants and collaborators

Consequences

Implementation

Generic Structure
Applicability
Sample code
Known uses

Related patterns

www.JavaTurk.org

All patterns have a unique name that identifies them.
The purpose of the pattern.

The problem that the pattern is trying to solve.

How the pattern provides a solution to the problem in the context in
which it shows up.

The entities involved in the pattern.

The consequences of using the pattern. Investigates the forces at play in
the pattern.

How the pattern can be implemented.
Note: Implementations are just concrete manifestations of the pattern
and should not be construed as the pattern itself.

A standard diagram that shows a typical structure for the pattern.

What are the situations in which the design pattern can be applied?
Code fragments that illustrate the pattern in a object-oriented language
Examples of the pattern found in real systems

What design patterns are closely related to this one? What are the
important differences?

28

http://www.JavaTurk.org

Why Design Patterns?

« Reusable designs,
« Formal and common language,

« Power to abstract away details while focusing on
higher objectives.

« Design patterns give us a methodology to avoid
potential pitfalls of procedural programming!

29

http://www.JavaTurk.org

Initial Works

click 10 SEARCH INSIDE!

Design Patterns

[Iumcnts}of Reusable

 Christopher Alexander o S
h“m ~—pa a
« Trygve Reenskaug, Smalltalk’la MVC e
(Model-View-Controller] [

« Kent Beck ve Ward Cunningham

« 1994 - Gang of Four (GoF) - Gamma,
Helm, Johnson, and Vlissides

e 1996 - Buschmann, Meunier, Rohnert,
Sommerlad, Stal

| SNYALLVd
'{ 30 WULSAS V

www.JavaTurk.org

30

http://www.JavaTurk.org

GoF’s Design Pattern Catalog

« GoOF has 23 patterns in 3 different categories in
their book:

e (Creational
e Structural

 Behavioral
 GoF is hard to understand,
« Examples given in C++,

 First two chapters is a very good summary of OO0

principles.
31

http://www.JavaTurk.org

/—-I Memento

saving stale
of itaration

k \ avoiding

creating hysteresis
composites \

Adapter

anumeraling
children

compossd

adding '
res;wrlsibu'f('cs_——\ f/ using Command
/ fo abjects

/.,— Composite
Decorator sharing \ I e

composites . defining defining
3 ! oourat N o ahn

oparations

defining

grammar Visitor

Flyweight

changing skin
Versus guis

adding
shaning Interpreter ———— operalions Chain of Responsibility

straleqies
L | (sharing
ferminal

Strategy shaning symbols

slales
complex
dapendency
.'.'.‘{frl"]ggfn‘_‘\nr Obsefvel’

State

deflning
algonthm’s

steps~—___ | n
Template Method — often uses

Prototype |-\
configure factory /_,——'—’_- FaCtOl’V Method

adynamically implemesnt using
\
o Abstract Factory

single
instancs

. ———— Facade
single

)/ nstance
| Singleton |‘

Resources

 F. Brooks, Mythical-Man Month & No Silver Bullet

 Shalloway, Trott, Design-Patterns Explained
« E. Freeman et al., Head-First Design Patterns

« M. Page-Jones, Fundamentals of Object-Oriented
Design in UML

» Ozcan Acar, Java Tasarim Sablonlari ve Yazilim
Mimarileri

www.JavaTurk.org 33

http://www.JavaTurk.org

Case Study: Proxy Pattern

 Let’s solve following problem using GoF's proxy pattern:

« In democracies, citizens have the right to reach the people that
govern themselves,

« PM as the highest governor has the responsibility to listen to
citizens for their requests and has the right to respond as he
wishes.

« Butitis not practical and secure to allow 75 M citizens to
reach PM.

« How can we manage this situation without violating the
democracy and security of the PM?

www.JavaTurk.org 34

http://www.JavaTurk.org

Finding Responsibilites

« Responsibilites:

« PM
Citizen alks to fistening PM
. n +tell() : void +listen()
¢ IISte nlng +askForJob() talking +findJob()

 finding job

 (Citizen
« But main problem:
« telling

« (itizen directly reaches the PM!
 asking for a job

www.JavaTurk.org 35

http://www.JavaTurk.org

Cohesion and Coupling

« How about a delegate between citizens and PM?
« This decouples PM from citizens but

 Violates the principle of the democracy!

Proxy

Citizen TIEEen0 PM
. voi talks to listenin delegates :
+tell() : void . g +delegate(g +I|_sten0
+askForJob() talking +decide(+findJob()

www.JavaTurk.org 36

http://www.JavaTurk.org

Proxy Pattern

« We should both isolate PM and at the same time
do this transparently to its clients,

« When we decouple PM from citizens through an

interface:

PMSecretary PM
+giveMePM() : PM preate | #listen0
+findJob()
\
i PM
give me alk
>|<
Citizen ProxyPM RealPM
+talk() : void +listen() +listen()
+askForjob() +findJob() vekil gercek |+findlob()
www.JavaTurk.org

37

http://www.JavaTurk.org

Other Kinds of Proxies

« Whenever you want to control the access to an
object you can use proxy pattern:

 Security proxies in networks,

« Remote (distributed) objects (RMI, Corba, web
services, etc.),

 Lazily-loading big or expensive objects

www.JavaTurk.org 38

http://www.JavaTurk.org

Thanks for
listening.

This presentation can be reach at

http://www.javaturk.org
http://www.JavaTurk.org

